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Abstract
Hearing loss is very common and economically burdensome. No accepted therapeutic modality for sensorineural hearing loss 
is yet available; most clinicians emphasize rehabilitation, placing hearing aids and cochlear implants. Photobiomodulation 
(PBM) employs light energy to enhance or modulate the activities of specific organs, and is a popular non-invasive therapy 
used to treat skin lesions and neurodegenerative disorders. Efforts to use PBM to improve hearing have been ongoing for 
several decades. Initial in vitro studies using cell lines and ex vivo culture techniques have now been supplanted by in vivo 
studies in animals; PBM protects the sensory epithelium and triggers neural regeneration. Many reports have used PBM 
to treat tinnitus. In this brief review, we introduce PBM applications in hearing research, helpful protocols, and relevant 
background literature.
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1  Introduction

Hearing disabilities, hypertension, and arthritis are the 
three most common human medical conditions [1]. Hear-
ing may degenerate with age, or may be compromised at 
birth or when young by noise exposure, ototoxic drugs, or 
genetic problems. Several large cohort studies found that 
over 45% of all subjects suffered from hearing loss [2–4]; 
a recent study reported that the prevalence of hearing loss 
in the young is increasing [5, 6]. Over 75% of those aged 
60–69 years may suffer from high-frequency hearing loss 
[5, 6]. Poor hearing causes communication difficulties 
and social withdrawal, affecting both the patient and his/
her family [6, 7]. Hearing must be preserved to facilitate 
social engagement as individuals now tend to live longer. 

Hearing is of great psychosocial importance; however, cur-
rently, only hearing aids and cochlear implants are available 
as treatments.

Photobiomodulation (PBM) and low-level laser therapy 
(LLLT) use light to reduce pain [8–10] and inflammation 
[11–15], induce analgesia [16], and promote nerve and tis-
sue repair [17–21]. As the laser power is low, tissue tem-
perature does not rise [22]. After PBM was approved by the 
United States Food and Drug Administration (FDA), diverse 
applications were reported. PBM is non-invasive and thus 
associated with minimal side-effects; however, the lack of a 
recognized therapeutic mechanism has hindered wider use. 
Both basic and clinical studies on the use of PBM to protect 
against hearing loss, tinnitus, and vestibular dysfunction in 
animals and patients have been published. Here, we review 
these studies and suggest future PBM applications.

2 � Cochlear anatomy and hearing loss

Hearing can be compromised by damage to various auditory 
organs. The organ of Corti, the peripheral structure associ-
ated with signaling transition, is the principal target of exter-
nal auditory stimulation. The inner hair cells (IHCs) and 
outer hair cells (OHCs) of the organ of Corti are critical for 
hearing. One row of IHCs and three rows of OHCs transmit 
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sounds. Endolymph ions flow into hair cells via channels 
that open at the tips of the stereocilia [23], inducing cellular 
depolarization that in turn releases neurotransmitters within 
synaptic vesicles in ventral cellular regions [24]. The neuro-
transmitters bind to post-synaptic receptors and the signals 
are thus further transduced to the spiral ganglion neurons 
that connect the hair cells with the cochlear nucleus of the 
brainstem, via nerve fibers [25, 26]. All of these peripheral 
inner ear organs (Fig. 1) can be damaged by external insults. 
Hair cells and stereocilia are the primary targets of noise 
[27–30] and ototoxic drugs [31–39]. Damage to these com-
ponents blocks signal transfer from the external ear to the 
brain, causing hearing loss. A recent study found that the 
ribbon synapse was the most vulnerable part of the periph-
eral auditory system [40]. High-level noise or ototoxic drugs 
can trigger IHC synaptopathy, reducing the peak amplitude 
of the auditory brainstem response (ABR) without changing 
the threshold [41–44]. The auditory and spiral ganglion neu-
rons can also be either primary or secondary targets of exter-
nal insults [45, 46]. Damage to the myelin or satellite cells 
of nerve fibers delays signal transport, triggering encoding 
deficits or rendering temporal processing inadequate [47]. 
All of these systems can be targeted by PBM to prevent or 
reverse hearing loss.

3 � PBM therapy for hearing loss

3.1 � Lasers and light‑emitting diodes

A laser (light amplification by stimulated emission of radia-
tion) transmits highly focused amplified light at specific 
wavelengths [48]. Both continuous-wave (CW) and pulsed 
lasers are available. Light-emitting diodes (LEDs) emit 
light of various colors when current flows through semi-
conductors [49]; LEDs last longer than general light sources, 
switch more rapidly, and consume less energy [50]. LEDs 

and lasers exhibit several differences (Fig. 2). LEDs gener-
ate light spontaneously; lasers must be stimulated to emit 
radiation [51]. Lasers generate light of coherent wavelengths 
but LEDs output light of substantially greater energy [52]. 
Laser light features a wide emission spectrum, whereas LED 
light is monochromatic, thus lying within a narrow spectral 
band [53]. Laser spots are tightly circumscribed; LED beams 
are wider, thus exhibiting more light-scattering than laser 
beams, rendering LEDs useful for irradiating larger areas 
[52]. Thus, lasers and LEDs differ in terms of spectral dis-
tribution, absorption, and interaction with photoreceptors, as 
reflected in their different therapeutic applications.

3.2 � Parameters relevant to PBM

Light irradiation and dose parameters are critical for PBM 
applications. Light is wave-like; wavelength is measured in 
nanometers and light of wavelength 400–700 nm is visible. 
PBM uses visible light; chromophores absorbing at dif-
ferent wavelengths exhibit various biological effects. Red 
and near-infrared (NIR) light of wavelength 600–1,100 nm 
is commonly used; such light penetrates tissue to depths 
greater than light of other wavelengths [54–58] and acti-
vates cytochrome c oxidase; this is the aim of most PBM 
therapies. The unit of power is energy; both peak and aver-
age energy can be relevant, depending on whether a CW 
or pulsed laser is used. Beam area is also critical, but is 
often incorrectly reported. The beams of diode lasers usually 
exhibit Gaussian distributions, i.e., brighter at the center and 
dimmer toward the edges; the precise amount of energy that 
reaches a target can be unclear. The beam combiner of Kim 
(Fig. 2) smooths energy distribution across the beam; this 
will greatly aid future research. Irradiance (or power den-
sity, mW/cm2) is the power divided by the beam area, and 
is also often misreported. Thus, careful calculation of PBM 
irradiance and power are essential when comparing studies.

Fig. 1   Schematic anatomy of the cochlea (a) and the organ of Corti 
(b). Stereocila at the apex of one line of IHC (yellow cell), and three 
lines of OHC (blue cells) are attached at tectorial membrane. At the 
bottom of IHC, synaptic ribbon (red) which is paired with post tynap-

tic receptor (light green) transmits the auditory signal to spiral gan-
glion neuron (green cell) through auditory fiber (green lines). (Color 
figure online)
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3.3 � PBM parameters relevant to hearing loss

When PBM is used to address hearing problems, the unique 
anatomy of the ear must be considered, because it affects 
the wavelength required for penetration. The light must 
pass through the tympanic membrane to reach the cochlea 
of the middle ear. Light of wavelength 680–850 mm is used 
most commonly [46, 59–65]. PBM must impart maximal 
benefits with minimal side-effects. Tympanic membrane 
status is important. Moon et al. [64] assessed PBM safety 
in an animal model using an 830-nm laser operating at dif-
ferent powers; PBM was delivered through the tympanic 
membrane for 30 min daily over 14 consecutive days. His-
tological changes in the tympanic membrane when the laser 
power was 250 mW included edema, vascular congestion, 
and inflammation; Only few lymphocytes were observed 
when the power was 200 mW [64] (Fig. 3).

PBM therapy is critically dependent on the power of 
the laser that reaches the cochlea; a detailed understand-
ing of ear anatomy from the external ear to the cochlea is 

indispensable. Coronal computed tomography was used to 
define the laser irradiation angle in an animal study [66]. 
Customized devices featuring protractors facilitate precise 
laser irradiation (Fig. 4).

4 � Studies using PBM to prevent hearing loss

4.1 � Previous in vitro and in vivo studies

Previous in vitro PBM studies are listed in Table 1. Organ 
of Corti tissue cultures and the HEI-OC1 cell line have been 
used to explore the effects of PBM after stress was imparted 
in vitro [62, 65, 67]. Diode lasers of similar wavelengths 
(808 and 810 nm) and powers (8–15 mW/cm2) were used 
to deliver light either once or repeatedly. PBM enhanced 
gene transfection [67], reduced inflammatory cytokine levels 
[65], and protected against cell loss after aminoglycoside 
treatment [62]. PBM using an 808-nm diode laser increased 
mitochondrial membrane potential (MMP) and adenosine 

Fig. 2   Multi-LD-based LLLT system for single well culture (a–d) 
and LED-based LLLT system for multi-well culture (e–h). a Photo 
of multi-LD-based LLLT system with three wavelengths (633, 780, 
804 nm); b light output design composed of diffuser and collimator 
to guarantee uniform irradiation; c light beam pattern of the 633 nm 

laser diode (LD) at 3 cm height; d block diagram of multi-LD-based 
LLLT system; e, f photo of LED-based LLLT system with single 
808  nm LED; g graphic user interface (GUI) for multi-well culture 
with different powers; h block diagram of LED-based LLLT system
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triphosphate (ATP) levels, and decreased the generation of 
reactive oxygen species (ROS) by stimulating the Bcl-2, 
JNK, and c-Jun pathways (unpublished data), consistent with 
the findings of previous studies showing that PBM increased 
intracellular ATP levels and the MMP, and reduced ROS lev-
els [68–71]. We were the first to evaluate PBM (using a low-
level 808-nm laser that penetrated the tympanic membrane) 

in a rat model (Male, 6 weeks) (Table 2). As noise exposure 
is the most common cause of hearing loss, we explored the 
protective effect of PBM after noise exposure [61]. After 
14 days of once-daily irradiation, treated rats exhibited bet-
ter hearing thresholds and less hair cell loss than controls 
[61]. Tamura et al. [72] delivered LLLT to the noise-exposed 
cochlea using our protocol, at two different powers (110 and 

Fig. 3   Histological changes in tympanic membrane after low-level laser therapy. Lymphocytes (arrowhead), edema (arrowed line), and vacular 
congestion (arrow) were found in the group with 250 mW laser while, only few lymphocytes were observed in the group with 200 mW [64]

Fig. 4   PBM system for in vivo 
study was customized for accu-
rate laser irradiation. Frontal 
(a) and lateral (b) view of PBM 
therapy tool for animal. c SD rat 
with laser tip attached at right 
ear. Frontal (d) and lateral (e) 
view of computed tomography 
scans of laser irradiation

Table 1   PBM parameters of 
previous in vivo studies

Laser type Wave-
length 
(nm)

Animal Power (mW/cm2) Irradiation 
time (min)

# of treatment 
(# per day)

Year Refer-
ence 
number

Diode laser 830 SD rat 200 60 10 (1) 2013 [66]
Diode laser 808 SD rat 110, 165 30 5 (1) 2015 [72]
Diode laser 830 SD rat 200, 250, 300 30 14 (1) 2016 [64]
Diose laser 808 SD rat 165 30 5 (1) 2016 [63]
Diode laser 808 Gerbil 200 60 7 (1) 2016 [46]
Diode laser 808 SD rat 165 60 15 (1) 2016 [59]
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165 mW); the higher power was same to what we delivered 
previously (165 mW) and was associated with an improved 
hearing threshold and less hair cell loss. Histologically, PBM 
inhibited apoptosis and iNOS expression [72]. In a later 
study using the same laser conditions, PBM reduced apop-
tosis and oxidative stress by activating the NF-KB signal-
ing pathway [63]. We administered unilateral/bilateral laser 
irradiation over 14 consecutive days after noise exposure, 
as above [59]. The bilateral group evidenced faster hearing 
threshold recovery than the unilateral group [59]. We did 
not explore cochlear effects, but PBM protected hair cells 
from the effects of noise exposure. We then explored the 
effect of PBM on spiral ganglion neurons [46]. Ouabain, a 
neurotoxin, was directly applied to the round window mem-
branes of gerbils, greatly elevating the hearing threshold and 
triggering complete loss of spiral ganglion neurons but with 
retention of intact organs of Corti. PBM (an 808-nm laser) 
was applied for 7 consecutive days commencing 24 h after 
ouabain treatment. Test animals evidenced less spiral gan-
glion neuron and post-synaptic receptor loss than controls 
[46]. Histology revealed major effects of PBM on auditory 
nerve fibers; PBM protected the cochlea.

PBM (low-level 830-nm laser irradiation) was protec-
tive in an animal model of salicylate-induced tinnitus; the 
gap pre-pulse inhibition of acoustic startle (GPIAS) served 
as a measure of tinnitus. After PBM, the GPIAS normal-
ized, indicating that PBM was effective, but the mecha-
nism remained unclear. We investigated the effect of PBM 
on vestibular function after an aminoglycoside insult [60]. 
Gentamicin was injected intraperitoneally into rats (Male, 
12 weeks) to induce vestibulopathy. PBM (808-nm diode 
laser irradiation) was performed on 7 consecutive days. 
PBM treatment normalized the vestibule, while control 
vestibules remained compromised [60]. Thus, PBM of the 
cochlea aided recovery of both hearing and balance after 
application of external stress.

4.2 � Previous human studies

Clinically, PBM has been used principally to treat tinnitus 
(Table 3). In the 1990s, He–Ne and Ga-Al-As lasers oper-
ating at 632 and 904 nm were used to this end [73–78]. 
Most studies reported positive effects [73, 74, 76, 77] 
but two using a similar [75] and a different [78] laser 

Table 2   PBM parameters in 
previous in vitro and ex vivo 
studies

Laser type Wave-
length 
(nm)

Cell line Power (mW) Irradiation time # of treatment 
(# per day)

Year Refer-
ence 
number

Diode 810 OC culture 8 60 min 6 (1) 2012 [62]
Diode 810 HEI-OC1 9.5 100 s 1 (1) 2016 [65]
Diode 808 HEI-OC1 15 15 min 2 (2) 2018 [67]

Table 3   PBM parameters of previous clinical studies

Laser type Wavelength Treatment target Power (mW) Irradiation time (min) # of treatmen (#/# day) Year Refer-
ence 
number

He–Ne, Ga–AL–As 632, 904 Tinnitus 12, 2–20 10 12 (1/1 day) 1993 [73]
He–Ne, Ga–AL–As 632, 904 Tinnitus 12, 30 8 8 (1/1 day) 1993 [74]
He–Ne, Ga–AL–As 632, 904 Tinnitus 12, 9–20 10 12 (1/1 day) 1995 [75]
He–Ne, Ga–AL–As 632, 904 Tinnitus 12, 30 8 8 (1/1 day) 1995 [76]
He–Ne, Diode 632, 830 Tinnitus 20, 100 9 10 (1/1 day) 1996 [77]
Diode 830 Tinnitus 40 9 10 (1/1 day) 1997 [79]
Ga–Al–As 830 Tinnitus 50 10 15 (1/1 day) 1999 [78]
Diode 635, 690, 780, 830 Tinnitus 50 Not provided 10 (1/1 day) 2003 [80]
Diode 650 Tinnitus 5 20 90 (1/1 day) 2008 [83]
Diode 650 Tinnitus 5 15 7 (1/1 day) 2008 [84]
Diode 650 Tinnitus 5 20 90 (1/1 day) 2008 [81]
Diode 650, 808, 904 Hyperacusis, SSNH 35, 490, 120 16–28, 4–16, 7 10–20 (2/7 days) 2010 [85]
Diode 650 Tinnitus 5 20 20 (1/1 day) 2011 [87]
Diode 650 Tinnitus 5 20 90 (1/1 day) 2012 [82]
Diode 531, 635 Tinnitus 7.5 5 3 (1/2–4 days) 2013 [86]
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did not. PBM therapy, at least weekly, at a wavelength of 
630–900 nm and an average power of 20 mW, improved 
tinnitus. Studies continued up to 2013. Shiomi et al. [79] 
were the first to use a PBM diode laser to treat tinnitus; 
58% of patients reported loudness reductions and 55% less 
annoyance. Later studies used PBM diode lasers to treat 
tinnitus [80–84], hyperacusis [85], and poor hearing [86]. 
Any effect of PBM remains controversial. Zazzio [85] 
reported that PBM improved hyperacusis. Okhovat et al. 
reported that PBM improved tinnitus but the effects varied 
by patient age and profession/job. Thus, patient character-
istics may affect PBM outcomes [87].

5 � Possible mechanism of PBM on hearing 
research

There are several possible mechanisms of PBM on hearing 
research. Cytochrome c oxidase (Cox), one of chromo-
phore and the terminal enzyme of the electron transport 
chain, has considered a major target of PBM. Modulation 
of Cox can increases the adenosine triphosphaste (ATP), 
cyclic adenosine monophosphate (cAMP), and the mito-
chondrial membrane potential (MMP) [68]. Photodisso-
ciation of NO in the cox by PBM converts mitochondrial 
inhibition of cellular respiration resulted from NO bind-
ing [88]. Transient receptor potential (TRP) families, light 
sensitive ion channels, can also be inhibited by infrared 
light, resulting in activation of neuronal voltage variation 
[89–91]. Known molecular mechanism of PBM protection 
through ROS modulation [58, 92, 93] and/or NF-kB acti-
vation [58, 63, 94] would occurred in the cochlea.

6 � Conclusion and future applications

We summarize previous work on PBM in the context of 
hearing research. PBM is non-invasive and reduces hear-
ing problems; the future is bright for this technology. How-
ever, despite positive laboratory and clinical reports, the 
absence of any explanation as to how PBM aids hearing is 
a major stumbling block. Mechanistic studies (transcrip-
tome or genetic analyses) are essential.
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